Using Support Vector Regression and Hyperspectral Imaging for the Prediction of Oenological Parameters on Different Vintages and Varieties of Wine Grape Berries

نویسندگان

  • Rui Silva
  • Véronique M. Gomes
  • Arlete Mendes-Faia
  • Pedro Melo-Pinto
چکیده

The performance of a support vector regression (SVR) model with a Gaussian radial basis kernel to predict anthocyanin concentration, pH index and sugar content in whole grape berries, using spectroscopic measurements obtained in reflectance mode, was evaluated. Each sample contained a small number of whole berries and the spectrum of each sample was collected during ripening using hyperspectral imaging in the range of 380–1028 nm. Touriga Franca (TF) variety samples were collected for the 2012–2015 vintages, and Touriga Nacional (TN) and Tinta Barroca (TB) variety samples were collected for the 2013 vintage. These TF vintages were independently used to train, validate and test the SVR methodology; different combinations of TF vintages were used to train and test each model to assess the performance differences under wider and more variable datasets; the varieties that were not employed in the model training and validation (TB and TN) were used to test the generalization ability of the SVR approach. Each case was tested using an external independent set (with data not included in the model training or validation steps). The best R2 results obtained with varieties and vintages not employed in the model’s training step were 0.89, 0.81 and 0.90, with RMSE values of 35.6 mg·L−1, 0.25 and 3.19 ◦Brix, for anthocyanin concentration, pH index and sugar content, respectively. The present results indicate a good overall performance for all cases, improving the state-of-the-art results for external test sets, and suggesting that a robust model, with a generalization capacity over different varieties and harvest years may be obtainable without further training, which makes this a very competitive approach when compared to the models from other authors, since it makes the problem significantly simpler and more cost-effective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ensemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search

In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...

متن کامل

Prediction of soil cation exchange capacity using support vector regression optimized by genetic algorithm and adaptive network-based fuzzy inference system

Soil cation exchange capacity (CEC) is a parameter that represents soil fertility. Being difficult to measure, pedotransfer functions (PTFs) can be routinely applied for prediction of CEC by soil physicochemical properties that can be easily measured. This study developed the support vector regression (SVR) combined with genetic algorithm (GA) together with the adaptive network-based fuzzy infe...

متن کامل

Nondestructive Determination of the Total Volatile Basic Nitrogen (TVB-N) Content Using hyperspectral Imaging in Japanese Threadfin Bream (Nemipterusjaponicus) Fillet

Background and Objectives: Considering the importance of safety evaluation of fish and seafood from capture to purchase, rapid and nondestructive methods are in urgent need for seafood industry. This study aimed to assess the application of hyperspectral imaging (HSI: 430-1010 nm) for prediction of total volatile basic nitrogen (TVB-N) in Japanese-threadfin bream (Nemipterusjaponicus) fillets, ...

متن کامل

PREDICTION OF EARTHQUAKE INDUCED DISPLACEMENTS OF SLOPES USING HYBRID SUPPORT VECTOR REGRESSION WITH PARTICLE SWARM OPTIMIZATION

Displacements induced by earthquake can be very large and result in severe damage to earth and earth supported structures including embankment dams, road embankments, excavations and retaining walls. It is important, therefore, to be able to predict such displacements. In this paper, a new approach to prediction of earthquake induced displacements of slopes (EIDS) using hybrid support vector re...

متن کامل

Online Voltage Stability Monitoring and Prediction by Using Support Vector Machine Considering Overcurrent Protection for Transmission Lines

In this paper, a novel method is proposed to monitor the power system voltage stability using Support Vector Machine (SVM) by implementing real-time data received from the Wide Area Measurement System (WAMS). In this study, the effects of the protection schemes on the voltage magnitude of the buses are considered while they have not been investigated in previous researches. Considering overcurr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2018